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digital  and  analog  audio  processing  was  implemented  in  the 
Commodore  64  demo  "Cubase64"  written  by  Pex  'Mahoney' 
Tufvesson in October 2010.
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I.  INTRODUCTION

This  white  paper  will  describe  how to manage to  do 11 
audio  effects,  in  real  time,  simultaneously,  with  a  home 
computer from 1982.

II. SYSTEM REQUIREMENTS

A. Commodore 64
• 64kB RAM

• 6502 processor, 8-bit, 1MHz

• RF antenna output, PAL video standard

• 6581/8580 SID sound chip, 3 oscillators, 1 filter

B. Commodore cassette player

C. TV

D. Joystick

III. SCREEN SHOT

Figure 1. Screen Shot

IV. VIDEO SHOT

Sooner  or  later  you'll  find  some  version  uploaded  to 
YouTube.com. Go and search for "Cubase64".

If you're not happy with a video version of it, go and grab 
an emulator of the Commodore 64. There are many,  but  I'd 
recommend the vice emulator at http://www.viceteam.org  

With  any  modern  computer  and  operating  system,  the 
Commodore 64 can be almost flawlessly emulated. You'll have 
cope with the monitor refresh being out of sync with the PAL 
TV's 50Hz video, though.

And, please make sure that your emulator is using the resid-
fp sound emulation algorithm, for the 6581 version of the SID 
sound  chip.  The  8580  SID  chip  works  too,  but  has  less 
interesting filters.

Or, if you're the happy owner of the real deal, please run 
Cubase64  on  your  Commodore  64.  If  you  don't  own  a 
Commodore 64, it's  a flea-market  bargain at  an approximate 
price of 50 SEK, €5, $5 or something similar. Oh! The joys of 
cheap retro computing!

Think of all the things you can do when not watching TV

http://www.viceteam.org/


V. SPECIFICATION

This is a list of all the requirements for Cubase64:

• Use  a  Commodore  64  home  computer  with  a  CPU 
constructed back in 1975, more than 35 years ago. The 
6502 CPU used about 4000 transistors, compared to a 
recent  2010 Intel  CPU with  1.17  billion  transistors. 
The  SID  sound  chip  was  designed  in  1981,  and  is 
described in the U.S. Patent 4,677,890, which was filed 
on February 27, 1983, and issued on July 7, 1987. The 
patent expired on July 7, 2004.

• Since  the  Commodore  64  don't  have  an  accessible 
audio-in port, it plays the complete song "Tom's Diner" 
by  Suzanne  Vega.  More  than  2  minutes  of  audio. 
Frequency range 20-16000Hz. Mono.

• Time stretch.  Will play the song with 0-200% speed 
without  changing  the  pitch.  This  algorithm uses  the 
Fast  Fourier  Transform  to  capture  the  frequency 
spectrum  of  the  audio,  and  then  uses  the  Inverse 
Fourier Transform with altered phase information for 
reconstructing the original audio with a new time scale.

• Vocoder.  For  getting  a  robotic  alien-pitched  sound. 
Also  an  algorithm  based  on  the  Fast  Fourier 
Transform.

• Auto-Tune. Will make the singing get closer to "perfect 
pitch". Works by analyzing the pitch, correcting it and 
then recalculating the audio using a pitch vocoder to 
compensate for the incorrect singing.

• Sub bass synthesizer. Will find the base frequency of 
the input signal and synthesize frequencies two octaves 
below the fundamental frequency.

• Equalizer. Will filter frequencies. Three different filter 
types can be combined: Low pass filter - will remove 
mid  and  high  frequencies,  Band  pass  filter  -  will 
remove low and high frequencies and High pass filter - 
will remove mid and low frequencies. This equalizer 
also comes with a resonance setting, which will make a 
distinct  peak  in  the  frequency  spectrum  around  the 
cutoff frequency.

• Echo.  Will  feedback  a certain  amount of  the sound, 
just as if standing in a small bathroom or a by a huge 
stone  wall.  The  echo  delay  is  selectable  from  0.0 
millisecond  to  32  milliseconds.  The  input  gain  will 
prevent  distortion  in  the  audio  computation.  The 
feedback gain will set how much of the delayed sound 
that will remain.

• Tube  distortion.  Analogue  electronics  have  a  non-
linear frequency response that  the human ears easily 
detects. Some people love it, some don't. This digital 
simulation  of  analogue  behavior  will  mimic  the 
behavior of a non-linear amplification stage.

• Grungelizer.  This  effect  will  limit  the  number  of 
quantization values that the audio will use. With CD-

quality audio, there's 65536 levels to choose from. This 
grungelizer will give your the option to use 256, 128, 
64, 32, 16, 8, 4 or 2 levels. This roughly translates to 
"the  number  of  different  places"  your  loudspeaker 
membrane will travel to.

• Compressor. This audio effect will analyze the volume 
level  of  the  audio,  and  raise  the  volume  for  silent 
passages. When applied to a human voice, the sound 
will appear to be closer to you.

• Dithering. This audio effect will add a small amount of 
noise  to  the  output  signal,  in  order  to  mask  the 
quantization  noise  introduced  when  changing  the 
volume  or  accuracy  in  the  digital  domain.  Type  1 
dithering  is  continuous,  while  Type  2  dithering  is 
program  dependent  and  hence  is  silent  when  the 
incoming audio is silent.

• Master Gain. This audio effect will change the output 
volume for the audio.

• All of these effect can be turned on simultaneously.

VI. HOW MUCH TIME DO WE HAVE?
The 6502 central processing unit (CPU) in the Commodore 

64 computer is run at almost 1MHz. This means that there's a 
clock ticking 985.248 times per second. I have chosen a sample 
playback rate of 7812.5 Hz, which means that we roughly have 
126 clock cycles available to calculate and play a new sample:

  Available clock cycles per sample=985248 / 7812.5 = 126

However,  the  CPU is  stalled  sometimes,  since  there  are 
"more important" chips that need to use the CPU's memory. 
The  video  chip,  called  VIC-II,  will  steal  the  memory  bus 
whenever it needs to fetch new data for displaying on your TV 
set.  This happens on every row, and there's  25 rows on the 
display,  and it needs to fetch 40 characters to display, and it 
does this 50 times per second.

Stolen clock cycles per second = 25 * 40 * 50 = 50000  

Divide this by the playback rate (7812.5 Hz), and we get

Available clock cycles per sample with graphics = (985248 
- 25 * 40 * 50) / 7812.5 = 119.5

This  is  an average  value,  since  we sometimes have  126 
clock cycles available, and sometimes just 126-40 = 86 clock 
cycles available.

Now, if  only this was the complete picture.  It  isn't.  The 
Commodore  64  has  a  sound  chip  that  wasn't  designed  for 
playing  samples.  Since  there's  not  much  available  memory, 
they did not intend the SID chip to play samples - 64kB with 
8kHz sample rate will give you a some 8 seconds of sound to 
play. There was no need for sample playback.

So, we have to fool  the SID chip to play samples,  even 
though it  only has the means of playing either  a continuous 
triangle waveform, sawtooth waveform, pulse-width waveform 



or  noise  waveform.  This  is  done  by  using  the  triangle 
waveform, resetting the oscillator with an undocumented test-
bit  originally  implemented  for  factory  testing,  setting  the 
accumulator frequency to change the increment speed of the 
accumulator,  and then after an exact number of clock cycles 
enable  the  triangle  waveform output  just  briefly,  practically 
emulating a sample-and-hold filter  that  will  keep the analog 
output fixed at a certain voltage. This requires 4 SID register 
writes, which will use

  4 writes * (Clocks per LDA instruction + Clock per STA 
instruction) = 4 * (2 + 4) = 24 clock cycles.

We now have between (126-24=102) to (86-24=62) clock 
cycles available per sample. Sounds complicated? Yes it is. To 
make matters worse, the 6502 CPU that will have to trigger all 
these  registers  in  the  SID  chip  will  need  to  be  completely 
synchronized  for  _every_  sample  that  is  output.  Else,  the 
accumulator  will  not  output  a  steady  amplitude  for  a  given 
desired output value.

Thankfully, there are support chips in the Commodore 64 
that will help us. But just a little. The 6526 CIA peripheral chip 
is used to interrupt the 6502 CPU every 126th clock cycle.

So far, so good. But, this interrupt is not stable. The 6502 
CPU was executing something when the 6526 CIA chip said 
"please stop what you're doing and come with me". The 6502 
response is "yes, I will come, but please let me finish this first". 
Which means that the 6502 CPU will execute the first NMI 
assembly  instructions  something  between  8  and  14  clock 
cycles later. But we need to know exactly how many cycles off 
we are.

This can be handled. The 6526 CIA has a byte register that 
will hold the current value of the timer, which is incremented 
by 1 every clock cycle. We will have to read this value, and 
compensate  for  the  clock  cycles  "lost"  during  the  interrupt 
phase.

But, all of this will require a number of clock cycles to be 
"wasted".  A rough  calculation is  that  the interrupt  will  take 
between 20-30 clock cycles with all of these features enabled.

Which means that we have between (102-30=72) and (62-
30=32) clock cycles available for calculating a sample.

32 clock cycles for a sample is not much. You need to keep 
in  mind  that  a  simple  operation  like  multiplying  two  8-bit 
numbers takes between 150 and 400 clock cycles with a 6502 
CPU, since it has no hardware support for multiplication. An 8-
bit addition, however,  will take 2 clock cycles,  which is the 
fastest instruction the 6502 can do.

So, we need to be able to utilize "the average number" of 
available  clock  cycles  for  calculations,  since  on-the-fly 
calculations of samples won't be be possible when the worst-
case occurs. We will have to use a sound buffer. 

This  sound  buffer  will  be  a  FIFO,  First-In-First-Out 
structure.  The  6502 CPU already  has  a  hardware  stack  that 
could  help  us.  But,  the  6502  stack  is  a  "Last-In-First-Out" 
structure. And, it is already in use by the 6502 interrupt handler 
and  subroutine  return  addresses.  Normally,  when  the  6502 

wants to put a value at the stack, it uses a "PHA" instruction, 
which will write the value to memory, and decrease the stack 
pointer. When it wants to get the value back, it uses a "PLA" 
instruction,  which  grabs  the  value,  and  increases  the  stack 
pointer. For writing sound to the sound buffer in the stack, we 
can only use the PHA instruction. The PLA instruction cannot 
be  used  for  reading,  since  the  hardware  implementation  on 
PLA in the  6502 CPU only supports  reading  the  last  value 
written on the stack.

We  will  have  to  read  the  sound  buffer  with  an  LDA-
instruction, and decrement our sound buffer pointer manually. 
Thus, the 6502 stack will wrap, overwriting old values with 
new ones, and any occurring interrupt will overwrite audio data 
as  well.  But,  as  long  as  the  "render  thread"  and  "playback 
thread" stay synchronized, we're good. 

So far, we have two threads which needs to run: the audio 
rendering  thread,  and  the  audio  playback  thread.  To  make 
smooth updates to the TV screen, we also need a third thread, 
the video update thread. This is also an interrupt, but it occurs 
twice every frame (100Hz). It takes care of joystick handling, 
changes  on screen  and changes  to  audio parameters.  It  also 
does the neat trick of disabling the upper and lower border on 
the Commodore 64 video chip, to make the visuals nicer.

So, the priority of the threads are:

 1. The audio playback thread (which uses a NMI interrupt)

 2. The video update/audio parameter thread (which uses 
the IRQ synced to the TV)

 3. The audio render thread

This means that the audio rendering will get "the rest of the 
available clock cycles" when the playback and the video update 
has taken what they need. Without the video update thread, we 
did  have  between  32-72  clock  cycles  available  per  sample. 
With the video update thread,  we have  in  average  40 clock 
cycles  per  sample.  We did  not  gain  much  clock  cycles  by 
introducing the sound buffer, but we did get the possibility of 
changing the graphics presented on the TV.

An assembly instruction on the 6502 CPU takes between 2 
and 8 clock cycles to run. 40 clock cycles will approximately 
be 40/3 = 13 assembly instructions. 

So,  the  answer  to  the  question  "How much time do  we 
have?" is:

  13 assembly instructions for calculating every new 8-bit 
sample.

VII. HOW MUCH MEMORY HAVE WE GOT?
A first-approach sample player on Commodore 64 will pick 

1 byte at a time from memory, and output that at a constant rate 
to the SID chip.  If  the sample rate  is  7812.5 Hz, filling the 
whole memory with nothing but sample data will get us 

  64kB / 7812.5 = 8.3 seconds of nice music.

This is far from the 2 minutes that I'd like to have... 



And, to make things worse, we do not have 64kB available 
to store samples in. The VIC-II registers, SID registers, color 
memory,  and  CIA  registers  do  have  useful  memory 
"underneath them", but unfortunately, we don't have the CPU 
time to switch these off, read a value, and then switch them on 
again. We need that CPU time for calculations. We lost 4kB. 
Then, we need a custom character set, which is 2kB. We need a 
screen buffer, which is 1kB. The 6502 stack, and the 6502 zero 
page registers will occupy 512 bytes. We're down to 64-4-2-1-
0.5 = 56.5 kilobyte of memory. And, this memory needs to be 
shared between the actual program playing the sound, any text 
messages appearing on the screen, and the sound data itself.

VIII. THEN HOW DO WE DO IT?
The  answer  is  compression.  We  need  to  make  a  lossy 

compression scheme that will playback approximately the right 
sound.  And,  as  we  realized  before,  the  decompression 
algorithm,  together  with  all  these  audio  effects  processors, 
cannot use more than 40 clock cycles per sample.

It is useful to limit the scope of the compression scheme. 
This time, the focus is on reproducing monophonic sounds like 
human speech, human singing, a solo violin or a flute.

When  playing  a  7812.5  Hz  sample,  there  will  only  be 
meaningful analog content in the frequency range between 0-
3900Hz.  The  rest  of  the  frequencies  in  the  music  (4kHz  - 
20kHz) will have to be played with some other method. I have 
chosen to use one of the SID chip's oscillators (there are 3) to 
play noise. The amplitude of the noise can be changed, but not 
much else. If the SID chip filter is available, it can be used for 
removing  the  white  noise's  frequencies  below 4kHz,  not  to 
interfere with the samples we have calculated. The modelling 
of the high frequency spectrum with noise is pretty ok when it 
comes  to  the  human  voice  anyway,  since  these  sounds  are 
produced by air turbulence in the mouth, filtered by the vocal 
apparatus.

The rest of the human speech apparatus works like this:

1. The vocal cords vibrate at a certain frequency, creating a 
rich, full sound with lots of high frequency harmonics.

2. The vocal tract will filter this sound, depending on how 
the  tongue,  mouth  and  cheeks  are  positioned/moved.  They 
together  create  an  acoustic  chamber  that  will  emphasize  a 
couple of frequencies (called formants), and attenuate others. 
There  is  another  set  of  sounds,  known as  the unvoiced  and 
plosive sounds, which are created or modified by the mouth in 
different fashions.

...and  that's  about  it.  Really.  A  nice  sexy  female  voice 
contains nothing but air turbulence, vibrating vocal cords and a 
gorgeous-looking acoustic chamber. 

We need a way of compressing any output that could come 
from this voice. So, let's try to separate the speech the same 
way it is made. We need to make a model for the frequency of 
the voice,  and a model for the formants/filter  that  the vocal 
tract form. 

I have chosen to take care of the frequency of the voice "in 
real time", while doing the audio rendering. I also take care of 
the amplitude of the sound "in real time" in the audio render 
loop. But, the formant filtering needs to be extracted and put 
into memory as tables.

For the lower 4kHz of the audio playback,  the encoding 
process takes some 25 minutes to run through, using a state-of-
the-art PC. It works like this: 

1.  Find  the  fundamental  frequency  of  the  sound.  For  a 
human singing voice,  this equals the note you'd  play on the 
piano. Or something in between notes on the piano.

    Lyrics: I  am  sit - ting in the mor - ning at the  di - ner on the cor-ner (breathe)

Figure 2. Fundamental frequency vs. time with lyrics. The 
red lines are the “ideal” frequencies found on a piano.

2. Resample the complete 2-minute song into a constant-
pitch audio sample. This sounds really strange, since the tempo 
of the song is lost, and the voice is a robotic one-note-song.

3. Extract some 15000 small pieces of this song which we 
now  will  call  "formant  waveforms".  These  waveforms  are 
actually loopable, since we have chosen a fixed frequency for 
all of them.

4. Compare all formant waveforms, and find out which of 
them sounds the same.

5. Remove formant waveforms that are similar until there's 
only 255 of them left.    

6. Make a couple of lists with this information:

       * Which formant waveform shall we play now?

       * At which fundamental frequency shall we play it?

       * And with what volume?

This sounds pretty straight forward - but this does not solve 
the problem. We only had some 50kB of memory left for audio 
data. We want to chose a formant waveform size, to start with. 
A female voice does not contain any frequencies below 150Hz. 
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That's  why we love  them, isn't  it?  So,  lets  choose  a  lowest 
frequency of 150Hz.

In order to handle sounds with frequencies down to 150Hz, 
each waveform is chosen to be 51 bytes long. Why? Because 
playing  this  waveform  at  7812.5Hz  will  then  produce  a  a 
fundamental frequency of

7812.5 / 51 = 153 Hz

Now, we need to store 255 waveforms, each 51 bytes in 
size, this is

255 * 51 = 13005 bytes of waveform data.

Fair enough.

And, for a two minute song, we need to store the tables 
with which formant, frequency and volume. To make a natural 
sound, these parameters should be changed approximately 150 
times per second. We need

  2 minutes * 60 secs per minute * 150 values per second * 
3 bytes per row = 54000 bytes

Oops. Out-of-memory error. Again.

The answer,  again,  is  compression.  We want  all  of  that 
data,  but  we need  to  make a  compression  scheme  that  will 
handle  it.  Fortunately,  we  only  need  to  decompress  these 
values 150 times per second. So, I chose a lossless compression 
scheme for these tables. The only functions that are available 
are "please give me the first value" and "please give me the 
next value".

IX. SO, WHAT DOES THE DECOMPRESSION RENDER LOOP LOOK LIKE?
As  stated  before,  the  formant  waveforms  are  extracted. 

Since we only kept 255 waveforms out of originally 15000, we 
need to smoothen out the sound a little. We should probably 
make as smooth transitions from one waveform to another, to 
make the formant transitions as accurate as possible.

The audio will be rendered one period of the sound at a 
time. All audio parameters  will need to be static during one 
period of the waveform. The reason for calculating one period 
of the sound at a time is to remove glitches and clicks when 
changing the audio parameters. If we did changes in the middle 
of  a  waveform,  there  would  be  an  audible  click  at  every 

parameter change. Now, changes occur at zero crossings of the 
audio output, which will be inaudible.

The available  audio  parameters  that  can  be  used  with  a 
basic version of the audio render loop are:

1. Audio pitch. The formant waveform can be resampled 
from 100% to 200% of the original speed.

2. "the current formant waveform" number. 0-255

3. "the current formant waveform" volume. 0-15

4. "the next formant waveform" number.    0-255

5. "the next formant waveform" volume.    0-15

The pseudo-code for this loop is:

WaveformIndex = 0.0;
SoundBufferIndex = 0;
while WaveformIndex < WaveformLength
{
 SoundBuffer(SoundBufferIndex++) =
  FormantWaveform[ThisWave][WaveformIndex] * ThisVolume 
  + FormantWaveform[NextWave][WaveformIndex] * NextVolume;
 WaveformIndex = WaveformIndex + AudioPitch/100;
}

Figure 3. The audio render loop pseudo code

I  previously  said  that  the  6502  CPU  had  no  hardware 
support  for  multiplication,  so we need  to  cheat.  This  is  the 
reason for  having only 16 different  volume levels.  We need 
tables  with  premultiplied  values.  With  16  different  volume 
levels (where volume multiplier of 0 is pretty silly, so volume 
level 0 is not silent, it is audible), we need 16 tables, with 256 
values in each. This occupies

  16 tables * 256 bytes = 4kB of volume table memory

  And the floating point arithmetic with the WaveformIndex 
needs to be implemented with fixed point numbers.

Which leads us to the fully functional basic version of the 
audio render loop, which you can see in Figure 4 at the bottom 
of this page.

There are a couple of tricks already used to speed this loop 
up.  The  WaveformIndex  is  decremented  instead  of 
incremented, since a comparison with zero is "for free", while 

    ldy #WaveformLength          ;y register is integer part of WaveformIndex throughout the whole loop
 AudioRenderLoop:
    ldx ThisWaveform,y           ;read FormantWaveform[CurrentWave] into x register
    lda ThisVolumeTable,x        ;multiply it with ThisVolume, and put result in accumulator
    ldx NextWaveform,y           ;read FormantWaveform[NextWave] into x register
    adc NextVolumeTable+$0f00,x  ;multiply it with NextVolume, and add result to accumulator
    pha                          ;output the audio sample to the sound buffer in the 6502 stack
    lda WaveformIndexLSB         ;put the fractional part of WaveformIndex into accumulator
    sbc #AudioPitch              ;add the AudioPitch
    sta WaveformIndexLSB         ;save the new fractional part of the WaveformIndex in memory
    bcs AudioNoY                 ;if there was no carry from the fractional part, skip next instruction
    dey                          ;decrease the integer part of WaveformIndex due to fractional overflow
 AudioNoY:
    dey                          ;decrease the integer part of WaveformIndex
    bpl AudioRenderLoop          ;If there's still more samples to process, go to top of loop again
 
    Figure 4. The complete audio render loop.



comparing  with  WaveformLength  costs  us  an  assembly 
instruction.

And, the assembly code is written as self modifying code. 
The audio parameters  are not  sent  to the audio render  loop. 
They are directly written into the audio render code. And, to 
make the code run even faster, it is copied into a special area of 
the memory that is called zero page, which saves a clock cycle 
inside the loop where WaveformIndexLSB is written. 

The  school  book  example  of  speeding  up  computer 
algorithms by using loop unrolling does not work here.  The 
audio  render  loop  contains  extensive  use  of  self-modifying 
code,  all  these  would  need  to  be  reworked  into  zero-page 
pointers  instead  -  and  the  addressing  of  zero-page  pointers 
cannot  use registers  x  and y as  above,  since  the 6502 CPU 
instruction set handle these differently.  We would get  rid of 
one branch instruction - but with the addedl overhead of zero-
page pointers we would not gain anything by loop unrolling.

There's another trick used, not easily spotted, though. The 
output in the audio buffer needs to be 8-bit unsigned. The audio 
waveforms used as raw input are 8-bit signed. The solution of 
for-free translation from signed to unsigned arithmetics is in 
the VolumeTables. By adding a bias of 0x40 (=decimal 64), 
and making sure of always adding two and only two samples 
together, the signed data read from the ThisWaveform will end 
up  being  aligned  to  0x80  (=decimal  128)  after  two  passes 
through the volume tables.

Another, pretty advanced, digital audio topic is the Nyquist 
frequency  (stated  in  1928  by  Harry  Nyquist,  a  Swedish-
American engineer) and the aliasing problem when resampling 
audio  waveforms.  To  make  a  long  story  short,  the 
WaveformTables  should  not  contain  any  frequencies  above 
2kHz,  since  playing  them  at  200%  pitch  would  introduce 
audible  artifacts  from signals  in  the  frequency  range  above 
2kHz. Refer to "wheels spinning backwards" on old Western 
films on TV, for instance.

We have used all the clock cycles that were available, and 
there  is  not  much else  we can  do  here.  If  we need  to  add 
something to the audio render loop, we will have to remove 
something as well.

X. MEMORY MAP

We know that  we don't  have  much memory to  use.  So, 
what about streaming the required data from tape or disk? Then 
we would not have to store the tables for waveform, volume 
and pitch for the whole 2-minute song.

If we start with the cassette, there is no way of getting 8-bit 
data from a cassette. The Commodore 64 has no fast enough 
AD-converter. But, there is a 1-bit interface from the cassette, 
and carefully toggling this bit will give us data. The normal 
tape loader uses 446 clock cycles for indicating a single “0”-
bit, and 668 clock cycles for indicating a single “1” bit. The 
maximum transfer rate is 28 bits per 50Hz, which is 175 bytes 
per second. This is too little, hence the normal cassette is not 
good enough for streaming the data.

The turbo loaders uses 216 clock cycles for a “0” and 326 
clock cycles for a “1”. This is 7.6 bytes per 50Hz frame, which 
is 381 bytes per second. This data rate is ok. But, the data is in 
bit  4  of  a  register,  and we will  need loads of  CPU time to 
decode this bit. So, due to the lack of free CPU clock cycles, 
the turbo tape approach is not ok for streaming data.

The same result is with streaming from a 5.25” floppy disk. 
The bandwidth with a seriously well-timed disk turbo is 3kB 
per second. But, to grab one byte from the disk drive over a 2-
pin  serial  interface  requires  approximately  90  clock  cycles. 
And, we don't have any spare clock cycles lying around, so we 
will have to skip using the floppy drive for streaming music 
data. - Which is a pity, since we would get rid of some 26kB of 
tables if we could.

So, the complete memory map now looks like this:

$0000- Zero page registers

$0040- Zero page self-modifying code

$0100- Audio buffer and 6502 CPU stack

$0200- Bootloader decrunch code

$0258- Program start, Initialization code

$0400- Loader screen text

$0800- Audio effects code

$1900- Which pitch to play

$4a00- Which waveform to play

$8500- Noise volume for 4kHz-15kHz range

$8c00- Waveform Tables

$c000- Calculated volume tables

$d000- Tube distortion volume tables – hidden underneath 
VIC, SID and CIA registers.

$e000- Custom charset graphics

$e800- Pre-calculated tables for sub bass frequencies, auto- 
tune, waveform pointers and LSR.

$ee00- Demo text and video code

$fc00- Screen memory
Figure 5. Memory layout

XI. SO, WHERE DOES THE AUDIO EFFECTS PROCESSING COME IN?
As  stated  before,  we  want  to  implement  time  stretch, 

vocoding, auto-tune, sub bass, equalizer, echo, tube distortion, 
grungelizer,  compression,  dithering and a  master gain.  And, 
we don't have any spare clock cycles left.

Fortunately, not all of these effects needs to be done in the 
digital domain. If we had to add an effect, we would have to 
remove something from the audio render loop.



We can start with the "easy" ones.  The ones that  can be 
handled in the analog domain by features in the Commodore 
64 audio chip "SID". The SID chip has a master gain setting, 
that we can use. This is analog, and has a 16-level setting that 
we can use.

Fine, only 10 audio effects to go.

Actually, the dithering is also handled by the SID chip. By 
using  one  of  the  three  SID  channels  for  playing  low-level 
dithering noise, this will effectively act as an added dithering 
noise in the analog part of the audio chain.

Dither  is  an  intentionally  applied  form of  noise  used  to 
randomize  quantization  error,  preventing  noise  at  discrete 
frequencies in an audio recording, that are more objectionable 
than uncorrelated noise. 

Technically  speaking,  the  applied  analog  noise  is  not 
dithering noise, since this would require some kind of feedback 
loop and normally some kind of sigma-delta-modulation. The 
correct term would be colored masking noise. Anyway, if you 
can live with the fact that this solution is colored masking noise 
and not dithering, we're done with this as well.

Fine, only 9 audio effects to go.

The sub bass synthesis is another part where the SID chip 
can help us. In fact, this is the part where the SID chip does 
excel. Did you know that today in 2010 you can buy hardware 
synthesizers,  widely  used  in  modern  pop  music  production, 
that  uses  the  SID chip?  They are  used  for  fat  bass  sounds, 
mostly. Which means that the sub bass sound you hear, is in 
fact the SID chip using one of its oscillators to play a triangle 
waveform. Effect solved.

Now, there's only 8 audio effects left.

The  last  effect  that  we can  use  the  SID  chip  for  is  the 
equalizer. The low, band and high pass filters are all part of the 
analog side of the SID chip, so is the resonance setting and the 
cutoff level. We couldn't have done it in the digital domain, so 
SID saves the day.

With 7 audio effects to go, we still have not changed the 
audio render loop at all.

As  much  as  possible,  we  need  to  avoid  having  to  do 
calculations inside the audio render loop. Any effect that can 
live outside the render loop, we should keep outside the render 
loop.  But,  the  only five  parameters  that  we can  change  are 
AudioPitch,  ThisWaveform,  ThisVolume,  NextWaveform, 
NextVolume.

Fortunately,  a couple of effects can be handled this way. 
Remember,  the  effects  left  are  time stretch,  vocoding,  auto- 
tune, echo, tube distortion, grungelizer, and compression.

Auto-Tune is  a  patented  audio  processor  created  by  the 
company  Antares  Audio  Technologies.  Auto-Tune  uses  a 
phase  vocoder  to  correct  pitch  in  vocal  and  instrumental 
performances.  It  is used to disguise off-key inaccuracies and 
mistakes, and has allowed singers to perform perfectly tuned 
vocal tracks without the need of singing in tune.  Or, it was the 
end of "real musicians". Auto-Tune killed music. Your choise. 

Cher recorded the song "Believe" in 1998, which more or less 
defined Auto-Tune as a digital audio effect that could be used 
or  mis-used  at  wish.  It  is  described  in  US patent  5973252, 
Harold  A.  Hildebrand,  "Pitch  detection  and  intonation 
correction  apparatus  and  method",  granted  1999-10-26, 
assigned to Auburn Audio Technologies, Inc.

 Auto-Tune  is  actually  just  a  matter  of  changing  the 
AudioPitch. Everything else is the same. We have a list already 
with the "desired audio pitch",  and it  is  a matter of slightly 
adjusting this towards the "perfect pitch". Thankfully, we only 
have to do this once per calculated period in the audio, which is 
somewhere around 150-300 times per second. Problem solved.

Vocoding is almost the same as auto-tune, or at least, this 
version of vocoding is. There are more complicated vocoders 
that blends waveforms together in the frequency domain - but 
for the basic robotic vocoder sound, changing the pitch into a 
constant-pitch  audio  is  enough.  So,  it  is  just  to  ignore  the 
"desired audio pitch" and replace it with the vocoder pitch.

Bruce  Haack's  Electric  Lucifer  (1970) was the first  rock 
album to include the vocoder and was followed several years 
later by Kraftwerk's Autobahn.

The definition of a vocoder is an analysis/synthesis system, 
mostly  used  for  speech.  In  the  encoder,  the  input  is  passed 
through a  multi-band  filter,  each  band is  passed through an 
envelope follower, and the control signals from the envelope 
followers  are  communicated  to  the  decoder.  The  decoder 
applies  these  (amplitude)  control  signals  to  corresponding 
filters  in  the (re)synthesizer.  It  is  a  51-band envelope  filter, 
since  the  extracted  formant  waveforms  are  filtered  in  the 
encoding step already, removing non-periodic harmonics.

The compressor algorithm normally works with look-ahead 
audio amplitude estimation, together with an automatic volume 
level.  But,  since  we  already  have  an  extracted  "this  is  the 
desired volume" list, the compressor is solved by adding the 
compressor level to the desired level. If the new level exceeds 
the  maximum  volume  level,  it  is  clipped  to  the  maximum 
volume level. Again, we only have to do this calculation 150-
300 times per second.

Now, we have 4 audio effects left. We're almost there, don't 
you think so?

You  probably  don't  agree  at  first,  but  the  time  stretch 
algorithm is actually the easiest of those that are left.  When 
stuck  in  the  digital  audio  time  domain,  it  is  terribly 
complicated. But, the complicated part is already done in the 
audio  compression  algorithm.  Remember,  we  did  have  a 
compressed  list  that  will  output  ThisWaveformNumber, 
ThisVolume and ThisPitch. And the only functions available 
was "give me the first value" and "give me next value". Time 
stretch works by _not_ asking for the next value, but instead 
reusing the old ones, sometimes. This is used for playing the 
song slower than normal. For achieving a speedup, we just ask 
for the next value, throw it away, and directly ask for the value 
after that. This will make the song play faster.

The  type  of  time stretch  used  in  Cubase64  is  the  phase 
vocoder approach, which normally is done like this:



1.  compute  the  instantaneous  frequency/amplitude 
relationship of the signal using the STFT, which is the discrete 
Fourier  transform  of  a  short,  overlapping  and  smoothly 
windowed block of samples;

2.  apply  some  processing  to  the  Fourier  transform 
magnitudes and phases (like resampling the FFT blocks); and

3. perform an inverse STFT by taking the inverse Fourier 
transform on each chunk and adding the resulting waveform 
chunks.

To be able to handle this in real-time, step 1, 2 and 3 are 
done already in  the audio compression step,  and so we can 
handle time stretch on-the-fly. Job done.

Three  audio  effects  left.  Echo,  tube  distortion  and 
grungelizer.

We'll  start  with the  grungelizer now. I think we need to 
take  a  look  at  the  audio  render  loop  algorithm  once  more. 
Currently, each sample is calculated as

  FormantWaveform[ThisWave][WaveformIndex]  * 
ThisVolume

  +  FormantWaveform[NextWave][WaveformIndex]  * 
NextVolume;

 If we want to make sure that instead of 8-bit output we get 
7 or 5 or whatever, we have the possibility of adding the filter 
to the audio render loop. It is actually just a matter of making a 
simple  "and"  with  a  constant.  But  there  is  a  better  way of 
making this filtering. Remember, we can't add anything to the 
audio render loop without removing something.

So, instead of adding an instruction that  takes two clock 
cycles into the audio render loop, we will change the contents 
of the audio multiplication tables. All of the 4kB of volume 
table  data  will  be  changed  to  have  lower  resolution 
multiplication  results.  We  do  have  to  make  loads  of 
calculations for all the new tables, but we save 2 clock cycles 
from the  audio render  loop,  and that's  what's  important  this 
time.

Two audio effects left. Echo and tube distortion.

Tube distortion (or valve sound) is the characteristic sound 
associated  with  a  vacuum  tube-based  audio  amplifier.  The 
audible significance of tube amplification on audio signals is a 
subject of continuing debate among audio enthusiasts.

The tube sound is often subjectively described as having a 
"warmth" and "richness", but the source of this is by no means 
agreed on. It may be due to the non-linear clipping that occurs 
with tube amps, or  due to the higher  levels of second-order 
harmonic distortion, common in single-ended designs resulting 
from  the  characteristics  of  the  tube  interacting  with  the 
inductance of the output transformer.

Soft  clipping  is  a  very  important  aspect  of  tube  sound 
especially  for  guitar  amplifiers,  although  a  hi-fi  amplifier 
should  not  normally  ever  be  driven  into  clipping.  A  tube 
amplifier will reproduce a wave relatively linearly to a point, 
and as the signal  moves beyond the linear range of the tube 

(into  overload),  it  distorts  the  signal  with  a  smooth  curve 
instead  of  a  sudden,  sharp-edged  cutoff  as  occurs  with 
transistors.

We'll implement tube distortion by introducing a non-linear 
function into the audio signal  chain.  There  are two ways  of 
doing these calculations:

• IR-switching technique

• Diagonal Volterra Kernel

IR stands for Impulse Response, and IR-switching handles 
the non-linearities by selecting different convolution FIR-filters 
depending  on  the  amplitude  of  the  input  signal.  The  first 
published papers about this was written by Bellini and Farina 
(1998) and Michael Kemp (1999).

The  Diagonal  Volterra  Kernel  uses  multiple  impulse 
responses,  and  convolutes  these  with  AudioInput, 
AudioInput^2, AudioInput^3, etc.

Cubase64 calculates  the non-linearity by using a second-
order  Diagonal  Volterra  Kernel  with  Impulse  Responses  of 
length 1. The mathematical equivalent is really simple:

  AudioOut = AudioIn * k1 + AudioIn^2 * k2;

We do not want to do these calculations in real time, so we 
will  have  to  incorporate  the  non-linearity  into  the  volume 
tables  as  well.  Even  more  so,  we  don't  want  to  do  these 
calculations at all on the 6502 CPU, so we're better of with a 
precalculated table with tube distortion. Do you remember the 
"hidden" memory underneath the VIC-II, SID, CIA and  color 
RAM? There's 4kB of RAM there, and we could grab a ready-
made copy of  the tube-distorted volume tables from it.  And 
apply the grungelizer's and filters when we make the copy. We 
will have to briefly pause the audio while the hidden memory 
is retrieved.

The  tube  distortion  “high”  setting  is  using  exactly  the 
precalculated  table.  The “low” setting is  achieved  by taking 
50%  of  a  normal  linear  volume  table  and  50%  of  the 
precalculated tube distortion table.

One audio effect left, echo. And this time, we do have to 
make a new audio render loop.

Electric  echo effects have been used since the 1950s. The 
Echoplex  is  a  tape  delay  effect,  first  made  in  1959  that 
recreates  the  sound of  an  acoustic  echo.  Designed  by Mike 
Battle, the Echoplex set a standard for the effect in the 1960s 

Echo is  the process  of adding a copy of  old audio with 
slightly lower volume. Fortunately,  we already have a sound 
buffer which is full of old audio. The buffer is 256 bytes long, 
and with a sample rate of 7812.5Hz, this equals

  256 / 7812.5 = 32.7 milliseconds of audio

  The  velocity  of  sound  is  approximately  343  m/s  at  a 
normal room temperature of about 20°C, so our largest sound 
delay  of  32  milliseconds  will  emulate  the  sound  travelling 
343*0.032=11 meters, which is the same as us standing in the 
middle of a sphere-shaped room 5.5 meters from the walls.



If you want to find such an echo in Sweden, visit the Water 
Tower in Växjö. It's  not a sphere shaped room, but the area 
below the Water Tower is half a sphere.

The feedback volume would be the relative damping that 
the material on the walls would make.

Well, it is time for a new audio render loop, this time with 
built-in  echo:  See  Figure  6  below for  the  code,  and  please 
compare with the original audio render loop in Figure 4.

The only changes  is  that  we had  to  remove the  smooth 
transition  from the  current  FormantWaveform  into  the  next 
one, replace it with adding the echo and the current formant 
waveform.

We  gained  one  clock  cycle  since  the  reading  of  the 
OldAudioAddress can be done without using the y register as 
offset. But, we lost 5 clock cycles when we had to decrement 
the OldAudioAddressLSB. So, the echo version of the audio 
render loop do take another 4 clock cycles for every sample 
that we calculate.

We already have a register y that is decreasing, how come 
this isn't used in addressing the "old audio"? The simple answer 
to  that  is  that  we  need  wrapping.  The  old  audio  buffer  is 
located between $0100-$01ff  in memory.  With a  fixed start 
position  with  the  y  register  (it's  either  WaveformLength  or 
WaveformLength-1 due to reasons not presented in this paper) 
– there is no way of efficiently using a decreasing y register to 
implement a wrapping buffer. This would need the y register to 
be started at the same place as our buffer, which will be more 
complicated than the loop above.

This concludes all of the audio effects. And they can all be 
used simultaneously. In real time.

On a home computer built in 1982.

XII. REFERENCES

Internet is your friend. Search and you will find. This is a 
list with recommended searches.

In order to understand 6502 CPU optimizations, you need a 
table with 6502 opcodes and clock cycle count.

You probably also want to take a look at the Commodore 
64  memory  map,  it  shows  all  special  addresses  that  the 
Commodore  64 has  for  its  VIC-II,  SID and CIA chips,  for 
instance.

You should want to read more about the audio effects used. 
They have names such as auto-tune, pitch vocoder, echo, time 
stretch,  audio  gain,  audio  quantization,  dithering  noise, 
equalizer and audio compressor (not to be mixed up with audio 
compression, which is a completely different cup of tea).

If you find a reference to something called "c64mp3", this 
refers to an older version of the Cubase64 demo, which "only" 
played  the Tom's  Diner-song,  but  without  the audio effects. 
The mp3-part of the name is of course a joke, as I guess you 
understand by now.

For more information about the Commodore 64 “sceners”, 
people  still  programming  audio-visual  entertainment  on  this 
old home computer,  see the Commodore 64 scene database, 
http://csdb.dk

XIII. DISCLAIMER

No, you can't use all audio effects at the same time. There 
is one exception. The sub bass synthesizer  and the dithering 
noise have to share one SID oscillator, which means that if you 
enable dithering, the sub bass will be silent. And if you enable 
the sub bass, the dithering will be lost. 

And, since the echo version of the audio render loop did 
take  four  extra  clock  cycles  per  sample,  the  CPU  will  be 
overloaded if you try to use 200% time stretch at the same time 
as  echo  is  turned  on.  Sometimes,  the  sound  buffer  will  be 
consumed faster than the echo render loop can fill it. Using the 
joystick  at  the  same  time  will  make  matters  worse,  since 
graphical  updates  have  higher  priority than  audio rendering. 
Users  of the PC versions of  Cubase would probably like to 
have it this way as well, but they are stuck in a world where 
audio  rendering  has  priority,  and  the  Windows  operating 
system will crash quite violently if the audio renderings takes 
too much CPU power. 

This Cubase64 demo does things that retail Cubase version 
cannot do. There's  no such thing as real-time time stretch in 
Cubase. Cubase can only do off-line time stretch, writing audio 

    ldy #WaveformLength          ;y register is integer part of WaveformIndex throughout the whole loop
 EchoRenderLoop:
    ldx OldAudioAddress          ;read the old audio into the x register
    lda EchoFeedbackVolume,x     ;multiply it with the EchoFeedbackVolume
    ldx ThisWaveform,y           ;read FormantWaveform[CurrentWave] into x register
    adc ThisVolumeTable,x        ;multiply it with ThisVolume, and add result to the accumulator
    pha                          ;output the audio sample to the sound buffer in the 6502 stack
    dec OldAudioAddressLSB       ;jump one audio sample forward in the old audio buffer
    lda WaveformIndexLSB         ;put the fractional part of WaveformIndex into accumulator
    sbc #AudioPitch              ;add the AudioPitch
    sta WaveformIndexLSB         ;save the new fractional part of the WaveformIndex in memory
    bcs EchoNoY                  ;if there was no carry from the fractional part, skip next instruction
    dey                          ;decrease the integer part of WaveformIndex due to fractional overflow
 EchoNoY:
    dey                          ;decrease the integer part of WaveformIndex
    bpl EchoRenderLoop           ;If there's still more samples to process, go to top of loop again

 Figure 6. The complete audio render loop, with echo.



to disk before playing it. This is due to the inherent timeline 
scale being identical for all tracks in a song. If you started to 
allow time stretching for one track only, it would need its own 
timescale, and the layout of the tracks would need reworking. It 
could  be  done,  but  I  understand  the  reasons  for  not 
incorporating real-time time stretch in Cubase.

And,  you  can  introduce  digital  artifacts  with  the  echo 
render  loop.  There's  no  CPU  power  left  to  handle  digital 
clipping, so any kind of arithmetic overflow will be heard not 
as distortion, but rather as high-volume noise. That's the reason 
for the Echo input gain setting. It could be hidden for the user, 
but it's funnier when it's there, I think. 

The  company  behind  the  Cubase  range  of  products, 
Steinberg, has nothing to do with this, as I hope you've already 
guessed. They have never made any official statements about 
Cubase and Commodore 64. Cubase is an excellent product, in 
my  opinion.  It  does  have  its  history  of  bugs  and  crappy 
behavior, but compared with the fun you get out of it, it's all 
worth it. 

There's probably loads of errors in this text. If you did find 
one,  I'd  be happy if  I  got  to know about it.  You'll  find my 
contact details at my homepage

  http://mahoney.c64.org

Some of the "errors" are deliberate, since telling the whole 
truth and nothing but the truth would miss the educational flow 
of the text. If you want the full Monty on the run, please read 
the source  code  of  the  encoder  and  cubase64  demo.  It's  all 
there. unabridged. And probably completely incomprehensible 
to 99.9% of the human population.

Most  of  the  comments  found  in  the  source  code  are 
meaningful. But there are traces of work-in-progress comments 
that should have been cleaned up long ago. The source code is 
correct, and most of the comments are too. If  you find your 
way around the code, it's a fun read. But, it is not for the faint 
of heart, and please mind the gap. 

Thanks  for  reading.  I  hope  you  have  learned  something 
new and I hope you feel it was time well spent. Please stop by 
my homepage http://mahoney.c64.org and give me a comment 
or two. 

Or even better,  head over to http://www.livet.se/visa and 
listen to and watch me and my friends sing Commodore 64 
music a cappella - and buy a CD or two! 

Best  Regards,  Pex  'Mahoney'  Tufvesson,  Lund,  Sweden, 
October 2010.

Pex  'Mahoney'  Tufvesson, 
M.Sc.EE.,  has  been  programming 
computers  since  1979.  PET,  ABC-
80,  Sinclair  ZX  Spectrum, 
Commodore  64,  Amiga  500, 
Nintendo  64,  Mac  and  PC.  He's 
currently  working  as  a  hardware 
engineer,  creating chip designs,  and 
is  the  webmaster  of  a  couple  of 
websites like  http://www.livet.se/ord 
which is a proverb collection. He's a musician with his own a 
cappella group http://www.livet.se/visa Visa Röster. You'll find 
more about him on his homepage http://mahoney.c64.org 

http://mahoney.c64.org/
http://www.livet.se/visa
http://www.livet.se/ord
http://www.livet.se/ord
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